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In this paper we examine the effects of concentration dependent diffusivity on a

\ \

> reaction—diffusion process which has applications in chemical kinetics and ecology.
. - We consider piecewise classical solutions to an initial boundary-value problem. The
< existence of a family of permanent form travelling wave solutions is established and
> > the development of the solution of the initial boundary-value problem to the
O : travelling wave of minimum propagation speed is considered. For certain types of
[~ initial data, ‘waiting time’ phenomena are encountered.
=0
T O
= 1. Introduction
<z The processes of reaction and diffusion play an important role in a wide variety of
5z p play p [ !
EQ chemical, biological and physical systems. A prominent feature associated with the
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230 A. C. King and D. J. Needham

concurrent occurrence of reaction and diffusion is the appearance of some type of
permanent form wave propagation. This occurs on a faster timescale than any purely
diffusive mechanisms and as such can be clearly visible in laboratory experiments. A
classical chemical example of this is the Belousov—Zhabotinskii reaction (Zha-
botinskii 1964) in which citric acid is oxidized by bromate ions. After an initial
induction period, in which diffusion takes place, a well-defined wave-front is
observed to propagate as a gross colour change in the reacting mixture. Autocatalytic
chemical systems, such as the iodate—arsenous acid scheme (Hanna et al. 1982)
exhibit travelling wave phenomena and have been extensively studied over the last
decade (see, for example, Needham & Merkin 1991). The spread of an advantageous
gene through a population (Fisher 1937) is a classical study of reaction and diffusion
in theoretical biology. A rather more easily observed phenomenon combining
reaction and diffusion is the change that occurs on the surface of a mammalian egg
after fertilization. The reaction spreads from the point of contact of the spermatozoon
and envelops the egg so as to inhibit further contact by other spermatozoa. A
common feature of many of the mathematical models of the above phenomena is the
assumption of a constant diffusivity between the reacting elements although the
reaction kinetics differ widely. Further details and more extensive surveys of
reaction—diffusion models in chemistry and biology are to be found in Winfree (1980),
Murray (1989), Jones & Sleeman (1983) and Gray & Scott (1990).

This paper is a study of reaction—diffusion equations with variable diffusivity and
the work is presented in terms of general diffusivity and reaction functions with as
few restrictions as is possible on the specific functional forms of these. To motivate
further the work of this paper and to explain the restrictions on functional form that
are necessary, it is instructive to consider briefly a physical model for the flow of a
reacting gas through a porous medium. For simplicity we consider a one-dimensional
flow with speed v(x,t), density p(x,t) and reaction rate r(«,t). The mass continuity

equation for such a flow is
LI (1.1)
o T '

The flow of gas in a porous medium is modelled using d’Arcy’s law which relates the
flow speed to the pressure gradient, Op/0x, in the form v = —K0p/0x, where K is a
material constant. If we further assume an ideal gas law in the form p = kp”, where
v is the ratio of specific heats and k is a scale or reference constant, then variations
in the gas density are solutions to the equation

B _ 0 (g
T ax(Kylcp % +7. (1.2)

The form of reaction function » requires further assumptions about the detailed
chemistry of the gas/porous matrix but generally one is led to a form for » which
depends only on p and has two zeros. These zeros reflect the vanishing of the reaction
at zero gas concentration and at a saturation level. It is also worth noting that
variable diffusivity reaction—diffusion equations occur in the modelling of insect and
microbe populations. The variable diffusivity in these cases arises from population
pressure and chemotaxis respectively, whilst the zeros in the reaction function are
associated with a logistic model of population behaviour (Murray 1989).
In may ecological models, theory has led to equations of the form

Phil. Trans. R. Soc. Lond. A (1994)
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where u is a population density, with ¥”(0) = 0 and F'(u) > 0 for w > 0, whereas r(u)
has logistic type structure. The form of the nonlinear diffusion function F(u) is based
on the assumption that individuals in populations disperse to avoid crowding.
Discussion of such models may be found in Aronson (1984), Grindrod (1988),
Grindrod & Sleeman (1987), Gurtin & MacCamy (1977) and Okubo (1980). In both
of these applications, (1.2) and (1.3) have a diffusivity which is low at low density,
vanishes at zero density and increases with increasing density. It is diffusivities of
this structure which we address in the present paper.

Equations (1.2) and (1.3) are parabolic in nature although they attain a degenerate
form where the diffusivity vanishes. In general, initial boundary-value problems for
such equations are well posed; however, the solution is not necessarily classical due
to the vanishing diffusivity at zero concentration w. It is possible to have (from initial
data with compact support) solutions whose support remains finite for all finite t > 0,
which have a moving boundary at the edge of the support domain where v = 0 and
the solution is not smooth (see, for example, Lacey et al. 1982). The determination -
of this moving boundary requires an extra condition to those usually placed on
parabolic equations. This condition will be seen to arise naturally when an integral
conservation form of equations such as (1.2) and (1.3) is considered.

In Lacey et al. (1982), weak solutions are considered to the nonlinear diffusion
equation w, = (u"u,), in —oo <x < oo, £>0 (rn>0) which have semi-infinite
support (—oo < x < s(t)) for all finite ¢t > 0. In particular, a class of similarity
solutions are obtained, which have finite support and exhibit waiting time
phenomena. In this paper we consider a similar initial value problem in a
reaction—diffusion context. Solutions with finite support develop, and for particular
classes of initial data, waiting times are exhibited. However, with the inclusion of
reaction terms, the existence of a family of permanent form travelling waves is
established, only one of which is non-classical. It is established that this non-classical
travelling wave develops from the initial value problem in the long time. Moreover,
the contraction onto this travelling wave solution is rapid, through terms exponential
in ¢ as t— 0o0. This should be compared with the development of travelling waves in
reaction—diffusion equations with constant diffusivity and logistic type kinetics,
when the contraction onto the travelling wave of minimum speed is through terms
only algebraically small in ¢ as t > o0 (see, for example, McKean 1975; Bramson 1978;
Merkin & Needham 1989; Billingham & Needham 1992).

In the rest of this paper a general theory for variable diffusivity reaction—diffusion
equations is developed through the detailed study of the solution to an initial
boundary-vaiue problem. A derivation of appropriate conditions at the moving
boundary of a non-classical solution together with some general properties of the
solution are discussed in §§2 and 3. In §4 we examine the existence of permanent
form travelling wave solutions, whereas §5 considers the convergence of solutions of
the initial boundary-value problem to a permanent form travelling wave in the long
time. Section 6 considers the small time development of the solution, with particular
attention to the development of the edge of the support domain, and the existence
of waiting time solutions. In §§7 and 8 we examine the waiting time solutions in more
detail. Section 9 develops numerical solutions to the initial boundary-value problem.
Finally, §10 examines the long time structures of the solution as it approaches the
permanent form travelling wave.

Phil. Trans. R. Soc. Lond. A (1994)
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2. Conservation laws and differential equations

We consider a scalar reaction—diffusion process in one space dimension for the
variable , which we may regard as the concentration of an autocatalytic chemical
species or the density of a population in ecological applications. Under reaction, u
reproduces itself at a rate R(u) and diffuses (in an unstirred environment) at a rate
equal to the gradient of the flux function F(u). Here, both F and R are smooth
functions of u. In dimensionless form, the integral conservation law governing the
reaction and diffusion of » is

Ty

Ty
EJ udx = [F(u)x]§2+J R(u) d, (2.1)
d¢ Zy ' Ty

for any x, > x; = 0,t > 0. Here x > 0 is the spatial coordinate and ¢ > 0 is time. The
coordinate x has been made dimensionless on the diffusion length scale associated
with the chemical timescale, whereas ¢ has been non-dimensionalized on the chemical
timescale. The variable u has been scaled with an equilibrium concentration u, > 0,
with F and R being the dimensionless forms of ' and R respectively.

We restrict attention to the situation when D(u) = F’(u) has D(0)=0 and
D’(0) > 0, with D(u) monotonically increasing in # > 0. These qualitative conditions
are typical requirements that arise in ecological and thermal models, where u
represents a population density or temperature respectively. In particular, the non-
dimensionalization allows us to set D’(0) = 1, after which we have

Du)~u as u—0% (2.2)

The reaction function R(u) is taken to have two zeros in w >0, at u =0 (the
unreacted state) and uw = 1 (the fully reacted state), with R(u) > 0 for u€(0, 1) and
R(u) <0 for uwe(1,00). The equilibrium states u = 0,1 are non-degenerate, so that
R’(0) > 0 and R’(1) < 0. Again the non-dimensionalization allows us to set R'(0) = 1,
so that

Ruy~u as u—>0"
} (2.30a)
R(u) ~R'(1)(u—1) as wu—1.
In addition, we include the condition
Ru)<u Yu=0, (2.3b)

which is a technical condition that will be required at a later stage.

We examine the initial boundary-value problem that arises when a localized
quantity of « is introduced initially into the otherwise unreacting state v = 0. Under
these circumstances, equation (2.1) must be solved in z,¢ > 0 subject to the following
initial and boundary conditions:

u,g(x), 0<x<o,
u(z,0) = {00 s o (2.4)

uy(0,6) =0, ¢>0, (2.5)
w(x,t)>0 as x—>o00, ¢>0. (2.6)
The function g(x) is positive, monotonically decreasing and analytic in 0 < z < o,

with, in particular max, _, ., {g(®)} =1, 0 <u, <1 and,
gx) ~ustg,(x—o)™ as x>0 (2.7)

Phil. Trans. R. Soc. Lond. A (1994)
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4
t

u(x,1)

classical x=s(f)

u(x,t)
classical

0 X
Figure 1. The z, t domain. u(z,t) has derivative jumps across x = s(t).

for some non-zero constant ¢,,, m = 0,1,2,.... The parameter o defines the support
of the initial data g(x).

With w(x,t) suitably differentiable in x,¢ > 0, the integral conservation law (2.1)
becomes

ou 0%u

ou

2
+D’(u) (a—x) +R(u), z,t>0, (2.8)
and the initial boundary-value problem reduces to solving (2.8) in x,t > 0 subject to
conditions (2.4)—(2.6). However, we observe that this initial boundary-value problem
is singular since D(0) = 0, and the initial data (2.4) has v = 0 for x > . Under these
circumstances we expect that a classical solution to (2.8), (2.4)—(2.6) will not exist
globally, nor even locally. To avoid this situation, we return to the original integral
conservation law, (2.1), which admits a much broader class of solutions than its
differential form (2.8). In particular, we consider solutions u(x,?) to the initial
boundary-value problem (2.1), (2.4)—(2.6) on

Dy ={(x,t)eR*:0<x <0, 0<t<T}

which have wu(x,t) continuous everywhere on D,, whilst w,, u,, u,, exist and are
continuous throughout D, except possibly along a finite number of continuous and
piecewise-differentiable curves in D . However, the limits of u,, u,, u,, exist as points
on such curves are approached from either side. We denote this class of functions on
Dy as C,[Dy], and refer to this as the class of piecewise classical solutions to (2.1),
(2.4)—(2.6) on D,. Clearly, all the operations in (2.1) are well defined for we C, [D].

(@) Piecewise classical solutions

Let u(xz,t) be a piecewise classical solution of (2.1), (2.4)-(2.6) on D,, with a
derivative jump across the smooth curve x = s(t), 0 <t < 7T, as depicted in figure 1.
We now consider the conditions which must be satisfied across x = s(t) by u(x,t) and
its derivatives. On either side of x = s(t) (0 < x < s(t), x > s(t)), u(x,t) is a classical
solution, and thus satisfies the differential form of (2.1), namely (2.8). Across x = s(f),
(2.1) is satisfied. We next take 0 < x;, < s(f) < @, in (2.1), and re-write it in the form

d s(t) Ty s (t) Ty

—{J udx+f udx} = [F(u)x]§2+f R(u) dx—!—f R(u)de. (2.9)

dt Z, s(t) ! x, s(t)

With weC, [Dy], we may take the limits 2, —s(t)”, x,—s(f)" in (2.9), which leads to
D(u(s(t), 8) [uy(s(t)", 1) —uy(s(t)~, )] = 0, (2.10)

Phil. Trans. R. Soc. Lond. A (1994)
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for 0 <t<7T. By hypothesis, wu,(s(t)*,t) # u,(s(t)",t) (otherwise the solution is
classical) and so (2.10) dictates that w(s(¢),t) must be a zero of the diffusivity function
D(u). However D(u) has only the single zero at v = 0, and so we have

Ut) = u(s(t), ) =0, 0<t<T. (2.11)

Moreover, since s(t) is smooth and ueC,[D,], we have, from (2.11),

ou ou ou du .
lim |—+4$(¢ —] = lim [———l—s‘(t —] =Ut)=0 2.12
MW[@t ( )ax s st~ L Ot )ax (® ( )
for 0 <t < T. Now, u(x, t) satisfies (2.8) in < s(t) and x > s(¢) with finite limits in all
derivatives as x — s(f)*. Therefore, using (2.8) in (2.12) we have

lim  [D(u) u,, + D’ (w) u?+5(t) u, + B(u)]

av».s(t)+

= lim [D(u)u,,+D u)ui+st)u,+Ru)]=0 (2.13)
x—>s(t)”
for 0 < ¢ < T.On using (2.2) and (2.11) in (2.13) we arrive at the additional regularity
conditions, . .
whut +i(t) = us(u; +4(t) =0, 0<t<T, (2.14)
where u} and u, are the limits of u, as x—s(t) from above and below respectively.
As ul # u, then (2.14) reduces to

u, = —4§(t), ul=0, (2.15a)

or uy, =0, ul=-—35@t). (2.15b)

Thus a solution of the integral conservation law (2.1) in C (D) satisfies equation
(2.8) throughout D, except possibly across a finite number of smooth curves, x = s(t),
in D, across which conditions (2.11) and (2.15a) or (2.15b) must be satisfied. The
remainder of the paper is concerned with constructing a piecewise classical solution
to the initial boundary-value problem (2.1), (2.4)—(2.6).

(b) Reformulation of the initial boundary-value problem

The form of the initial data in (2.4) leads us to consider a solution of the initial
boundary-value problem (2.1), (2.4)—(2.6) which is piecewise classical, with a single
jump across x = s(t), at which conditions (2.11) and (2.15a) must be satisfied. The
initial boundary-value problem can now be reformulated as follows:

0<a<s),t=0

w, = D(u) Uy, + D' () (uy)? + R(u), (2.16)
u(z,0) = uyg(x), s(0)=o, (2.17a,b)
u,(0,t) =0, (2.18)
w(s(t),t) = 0, wuy,(s(t),t) = —3$(¢). (2.19a, b)
x = s(t),t>0
u, = D(u )um-l-D'(u) (ug)*+ R (w), (2.20)
u(z,0) = (2.21)
u(x, t)—>0 as x—> o0, (2.22)
u(s(t),t) =0, wu,(s(t),t) =0. (2.23a, b)

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

\
A
[\
N

A

a
//\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

) N

A\
/

y 9

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Variable diffusivity in reaction—diffusion 235
We observe immediately that the appropriate solution to (2.20)—(2.23a,b) has
u(x,t) =0, x=s(t), t>0, (2.24)

and it is shown in the Appendix that this is unique. It remains to consider the initial
boundary-value problem (2.16)—(2.19a, b), which must be solved for u(x, t) and s(t) in
0<x<s(t), t>0. We note that (2.16)~(2.19a,b) is a nonlinear free boundary
problem, with conditions (2.19a,b) being of the Stefan type (see, for example,
Friedman 1964). We begin by obtaining some general properties of the solution to
(2.16) —(2.19), which we henceforth refer to as 1BVP.

3. General properties of IBVP
We first obtain bounds on u(zx,t).

Proposition 3.1. Let u(x,t), s(t) be the solution of iBvPon 0 < x < s(t), 0 < ¢t < T, for
any T > 0, then 0 < u(x,t) < 1.

Proof. We first extend the definitions of D(u) and R(u) into 4 < 0, so that
Dwu)=0, R(u)=u* for u<O0. (3.2)

With (3.2) we note that both D(u) and R(u) are Lipschitz continuous for
— 0 <u <.

Now let € > 0 be arbitrary and we show that u(x,t) > —eon0 < x < s(t),0 <t < T.
For x =s(t), 0 <t < T, then u(s(t),t) > —e via conditions (2.17a) and (2.19a). It
remains to consider u(x,¢) for 0 < x < s(t), 0 <t < 7' Clearly we have

w(x,0)>—e¢, 0<z<o (3.3)

via condition (2.17a) and the properties of g(x). Now suppose there are 0 < * < T
and 0 < z* < s(t*) with u(x*,t*) < —e. Then, via (3.3), there exist 0 < ¢ < t* and
0 < 2° < s(t°), with

w(@x®, %) = —e, u (%) =0, wu,,(x°1°) =0, (3.4)
u, (2%, 1) < 0. (3.5)
However, equation (2.16) holds at z = 2°, t = ¢°, leading to
U (2, 19) = D(—€) g0, 1)+ D' (— ) [t 2, )2+ R(—e),
which gives, via (3.4) and (3.2),
u,(2°,8°) = € > 0,

contradicting (3.5). We conclude that u(z,t) > —e on 0 < z < s(t), 0 < ¢ < 7 for any
e > 0, and the left-hand inequality follows directly.

A similar approach also establishes the right-hand inequality, on recalling that
0<u,<1. O

An immediate consequence of proposition (3.1), which follows after use of
condition (2.1956) and the mean value theorem is that

$(ty =0, 0<t<T, (3.6)
which implies that s() is non-decreasing.

Phil. Trans. R. Soc. Lond. A (1994)
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4. Permanent form travelling waves

We expect that the long time development of 1BvP may involve the propagation
of a travelling wave of permanent form in x > 0, separating the unreacted state,
u = 0, ahead, from the fully reacted state, w =1, to the rear. Therefore, before
developing 1BvP further, we examine the possible class of piecewise classical
permanent form travelling waves that can be sustained by the integral conservation
law (2.1). We note at this stage that permanent form travelling wave solutions to
reaction—diffusion equations of the type (2.8) with D(u) =", nelN, and
R(u) = u(1—u) have been discussed previously by Newman (1980) and reviewed
recently by Murray (1989) and Grindrod (1991). This section generalizes these results
to the broader class of functions D(u) and R(u) defined in §2.

To proceed, we make the following definition.

4.1. Definition. A permanent form travelling wave solution of the integral
conservation law (2.1) is a non-negative solution which depends only on the single
variable z = x—y(t) (where y(t) is the position of the wave-front), and satisfies the
conditions u—0 as z— o0, u—1 as z——00. In addition the solution should be
continuous and piecewise classical for —o0 <z < .

A permanent form travelling wave therefore satisfies the differential equation
D(u)u,,+D"(u) u2+vu,+R(u) =0, 4.2)

at all but a finite number of points z =z, (i = 1,2,...,N), at which the appropriate
form of conditions (2.11), (2.15a) or (2.15b) must hold, namely,

u(z) =0, (4.3)

u, =—v, uf=0, or u; =0, ul=-—v, (4.4)

with the usual + notation. In the above v = y(t). However, since u is a function of

z alone, (4.2) determines that the wave-front propagation speed v must be constant.

Moreover the symmetry of (4.2)-(4.4) implies that we need only consider the

situation when » > 0. The boundary conditions which must be satisfied by u(z) are

u(z)>0 as z-— o0, 4.5a)

u(z)>1 as z—>—o00. (4.5b)

The problem (4.2)—(4.5) can be thought of as a nonlinear eigenvalue problem with

the positive propagation speed, v, being the eigenvalue. We study (4.2)—(4.5) in the

phase plane.

(@) The phase plane

We introduce the variable w = u, and write (4.2) as the equivalent system
u,=w, w,={—D"(u)w*—vo—Ru)}/Dw). (4.6)
The trajectories of system (4.6) in the (u,w) phase plane satisfy the first order
ordinary differential equation
dow/du = {—D’'(u) w*—vw—R(u)}/wD(u), 4.7)

from which it is clear that the singular system (4.6) has the same phase portrait as

the regular system
u, = oD(7), (4.8a)

o, = —D'(#) @* —vw— R(u). (4.8b)
Phil. Trans. R. Soc. Lond. A (1994)
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We are thus able to characterize the phase portrait of the singular system (4.6) via
that of the regular system (4.8). The latter has three equilibrium points in the (i, @)
phase plane, at (0,0), (0, —v), (1,0). Thus a solution of (4.2)—(4.4) which satisfies the
conditions (4.5a) and (4.5b) requires the existence of a directed integral path of
equations (4.8a) and (4.8b) which connects the equilibrium point (1, 0) to (0,0). The
path must be regular in @ > 0 but may jump from (0, —v) to (0,0) according to (4.4)
(observing that the second of conditions (4.4) is ruled out by definition (4.1) when
v > 0).

We begin by examining the local behaviour in the neighbourhood of the
equilibrium points of (4.8). Linearization of equations (4.8) at the point (1,0) shows
that it is a simple saddle point with eigenvalues and associated eigenvectors given by

A =—H[—4D()R' ()] +0}, e, = [D<1>,A1]T,}
A =H[P—4D() R'()—v}, e, = [D(1),A,]".

Hence there are two possible integral paths which satisfy (4.5b), namely those two
paths which leave the equilibrium point (1, 0) on the unstable manifold. However,
the path that is directed from (1, 0) into the quadrant @, @ > 0 must have @
monotonically increasing and therefore cannot reach (0, 0) or (0, —v), and we must
rule this out as it cannot satisfy condition (4.5a). Therefore, a solution to (4.2)—(4.5)
must correspond to that integral path of system (4.8) which leaves the equilibrium
point (1, 0) on that section of the unstable manifold that points into the region # < 1,
@ < 0. We label this §,, and the local behaviour in the neighbourhood of the
equilibrium point is shown in figure 2.

Linearization of equations (4.8) about the equilibrium point (0, 0) shows that it is
non-simple with eigenvalues and associated eigenvectors given by

=0, eﬂl = [O’ 1]T7 }
=0, e, =[1,—1/v]"

Hence, the linearized equations do not give a classification of the local behaviour.
However, a straightforward application of the centre manifold theorem (see, for
example, Carr 1981) shows that the equilibrium point has a unique, one dimensional,
invariant stable manifold, locally tangential to €, and a one dimensional invariant
centre manifold locally tangential to e,. Moreover, Carr’s theorem (Carr 1981)
guarantees that any paths in the vicinity of (0,0), except those in the stable
manifold, contract rapidly onto the centre manifold. Thus, the dynamics on the
centre manifold determine the nature of the equilibrium point (0,0). An
approximation to the centre manifold is readily obtained as

(4.9)

(4.10)

wc(a)~—%a—%[%+§R”(O)]a2+... (4.11)
as #— 0. Thus, on the centre manifold we have, via (4.8a), that #, < 0 in both # > 0
and # < 0. Therefore, all paths starting to the right of the stable manifold enter (0, 0)
along the centre manifold whereas those starting to the left of the stable manifold are
swept away from (0,0) close to the centre manifold. We conclude that (0,0) is a
saddle node with the nodal region to the right of the stable manifold and the saddle
region to the left. All paths which enter (0,0) do so along the centre manifold (4.11)
except the two paths that form the stable manifold. These enter (0,0) along the @-
axis. The phase portrait in the neighbourhood of (0,0) is shown in figure 2.
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Figure 2. The (#, @) phase plane.

Finally, linearization about the equilibrium point (0, —v) shows that it is a simple
saddle point, with eigenvalues and associated eigenvectors given by

v=v e, =[01],
{ R (4.12)
vy, = —u, eyzz[l,%+vD (O)] .

The phase portrait in the neighbourhood of (0, — ) is illustrated in figure 2, with the
section of the stable manifold in @ > 0 labelled as §,.

We also note that the whole of the @-axis forms an integral path of the system
(4.8), as illustrated in figure 2. Next we define the rectangular region

R={ma)0<a<1, —v/M<a<O0} (4.13)

in the (#,®) phase plane, with M = inf{D’(%):0 < @ < 1}. We readily observe that
integral paths of (4.8) strictly enter B along the edges

Ly={®mv):8=0, 0<u<1} } i
Ly, ={(w,7):—v/M<><0, u=1},

but cannot enter K through the remaining edges
Ly={@m0):0=—v/M, 0<a< 1},} wis)
L,={(@v):—v/M<w<0, uw=0}

The situation is shown in figure 2. It is now straightforward to observe that the stable
manifold S, of the equilibrium point (0, —») must enter R either through L, or L, but
cannot enter through L, or L,. Thus there are three cases to consider, namely,
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Figure 3. The locations of S; and S, in the three cases (a) case (i), (b) case (ii), (c) case (iii).

(i) S, enters R through L,. In this case, S, lies below S, in R and cannot therefore
connect to (0,0). In fact S; must leave B through L,. Hence the eigenvalue problem
(4.2)—(4.5) has no solution in this case (see figure 3a).

(ii) S, connects with the equilibrium point (1,0). In this case, in terms of the
original system (4.6), this path approaches (1,0) as z—~— 00, but reaches (0, —v) as
z—07. The jump conditions (4.4) then allow a jump from (0, —v) at z = 0~ to (0, 0)
in z > 0. Therefore in this case there is a unique solution to the eigenvalue problem
(4.2)—(4.5). This solution is not classical and has a single jump in u, at z = 0. For
z > 0, u(z) = 0, whereas for z < 0, u(z) is monotonically decreasing (see figure 3b).

(iii) S, enters B through L,. In this case S, lies below S, in B. Thus S, enters an
invariant region in which the only attractor is (0, 0) and so S, must connect to (0, 0).
Hence the eigenvalue problem (4.2)—(4.5) has a unique solution (see figure 3¢). In this
case the solution is classical and monotonically decreasing.

It remains to decide which of the above cases holds for each v > 0. We achieve this
by defining a function f(v) to be @,, the value of @ at which S, crosses the #-axis in
case (i), and to be 1 —@, in case (iii), where @, is the value of @ at which S, crosses
the line @ = 1. In case (ii) we set f(v) = 1. This gives a well-defined value f(v) > 0 for
all v > 0. Moreover, because the right-hand sides of (4.8) are differentiable functions
of the parameter v, as well as @ and @, the integral paths depend continuously on v
(see, for example, Hirsch & Smale 1974), and hence f(v) is a continuous function in
v>0.

With f(v) defined in this way, we have established the following proposition.

Proposition 4.16. The eigenvalue problem (4.2)—(4.5) has

(i) a unigque solution for each v > 0 such that f(v) = 1. For f(v) > 1, the solution is
classical whereas for f(v) = 1, the solution has a single jump in u,;

(ii) mo solution for each v > 0 such that 0 < f(v) < 1. O

It remains to compute the function f(v) in » > 0.

(b) The function f(v)
The following proposition establishes an important property of the function f(v).
Proposition 4.17. The function f(v) is strictly monotonically increasing for v > 0.

Proof. From equations (4.8) we have

0 [do 1
a[d‘a] =~ D@ <° (419
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for all @ > 0. Hence, as v increases, the vector [#,,@,]" defined by equations (4.8)
rotates clockwise at any given point in R and tends monotonically to the upward
vertical as v— co. With v = vy > 0 we define the region

R”o = {(w, 0) :(Ds('a)lv=v S0<0, O<su<ly

where @ = @,(@)|,-,, is the equation describing the integral path S, in B at v = v,.
When v = v; > v,, all 1ntegral paths on the part of the boundary of R , given by the
segment of the curve @ = @,(®)|,-,, in R enter R, , by (4.18). All 1ntegral paths on the
remaining two straight line segments of the boundary of R, also cannot leave R, , a

shown in figure 2. Since at v = v,, 8, originates at (0,v,) € R\R, , it cannot then enter
R, with decreasing z, and the result follows via the definition of f(v). O

To determine f(v) in v > 0, we must follow the path S,, given by @ = &,(%) as @
increases from zero. The integral path @,(#) satisfies the condition

o (@) ~—v+[1/(2v)+vD"(0)]u+... as uw—>0" (4.19)

and the differential equation
da,/du = —[D'(#) @2 —vw,— R(w))/w,D(®w), % >0, (4.20)
via (4.8) and (4.12). We consider the asymptotic forms of &,(%) whenv € 1 and v > 1.

O<wv<l

As v—0, condition (4.19) suggests that @, = O(v), whereas (4.20) gives @ = O(v?).
We therefore introduce the scaled variables, @, and 4, as

=0, @, =0, (4.21)

with 4, &, = O(1) as v—0. In terms of the scaled variables (4.21), the initial value
problem (4.19), (4.20) becomes

Ay /Al = — (G2 — By —0) by, By~ —1+Mi+... as 4->0%,  (4.22)

at leading order in v A numerical integration of (4.22) shows that @ () crosses the
w-axis when 4 = u* ~ 0.8587. Hence, when 0 <v <1, case (i) is obtained and
Uy ~ v*u*, which gives,

f) ~u*® as v->0". (4.23)

v>1
As v— 00 condition (4.19) suggests that @, = O(v) whilst @ = O(1). We therefore
introduce the scaled variable &, = @,v™" with @&, = O(1) as v—> 0. In terms of the

scaled variable the initial value problem (4.19), (4.20) becomes, at leading order as
v—> 00,

dg, D'(w) . 1 ~ -
dﬁ+D(a)ws_ D__(z_t)’ O;—~—1 as u—>0". (4.24)

The solution to (4.24) is readily obtained as

Oy(7) = —u/D(7). (4.25)

An examination of (4.25) shows that @, < 0 for all 0 < % < 1, and so case (iii) holds
when v > 1, and @, ~ —v/D(1 Therefore we have,

f(v) ~v/D(1)+1 as wv—>o0. (4.26)
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v=0(1)

On using the asymptotic forms for 0 < v < 1, (4.23) and v > 1, (4.26), we observe
that f(v)—>0 as v—0 and f(v)—>o0 as v—oo. Hence, from Proposition 4.17 the
equation f(v) = 1 has a single positive solution in » > 0, at » = v*, say. Also f(v) > 1
for v > v* and 0 < f(v) < 1 for 0 < v < v*. We can use Proposition (4.16) to establish
the following theorem.

Theorem 4.27. The eigenvalue problem (4.2)-(4.5) has a solution if and only if
v = v*, where v* is the single positive root of f(v) = 1. Moreover, the solution is unique.
For v > v* the solution is classical, whereas for v = v* the solution has a single jump
mu,.

We now examine properties of the travelling wave solutions.

(c) Properties of the solutions

Since for each v > v*, the trajectory representing the travelling wave solution lies
in w < 0, then each travelling wave is monotonically decreasing. For a given v > v*
the solution of the eigenvalue problem leaves the saddle point at (1, 0) along the
unstable manifold S;, so that w ~ [A,/D(1)] (v—1) as u— 17, using (4.9). Substitution
into (4.6), followed by an integration then gives

w(z) ~ 1—Aer#PW a5 25— 0, (4.28)

where 4 is a positive constant. Thus, for every v > v*, u(z) decays exponentially in
z to its final value of unity, as z—~—c0. However, for v = v*, u(z) = 0 for z > 0, with,
from (4.12) and (4.6),

u(z) ~—v*z as z—>07, (4.29)
whereas for v > v*, from (4.10) and (4.6),
u(z) ~Be ™ as z->00, (4.30)

with B a positive constant.

We conclude that there is a one parameter family of piecewise classical
permanent form travelling wave solutions to the integral conservation law (2.1).
These are parametrized by their propagation speed v = v*. For v > v* the travelling
waves are classical, whereas the minimum speed travelling wave with v = v* has a
single jump in u, at z = 0.

(d) An example: the modified Fisher equation
As an example, we consider the case in which

Du)=wu, Ru)=u(l—u). (4.31)

Thus, we are considering equation (2.1) with a reaction function corresponding to the
Fisher equation, but with a diffusivity which varies linearly with u.

This equation has been studied previously by Newman (1980) and is discussed by
Grindrod (1991). However, for the purposes of the present paper it is instructive to
give a brief re-examination. In this case the boundary value problem for the
minimum speed travelling wave is

wi,, +ul+v*u,+u(l—u) =0, —o0 <z2<0, (4.32)
u(0) =0, u,(0)=—v* wu(z)>1 as z—>—o0. (4.33a—c)
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0 T ) T T T Al — T 1

-10 0 8
Figure 4. The travelling wave for the modified Fisher equation with v = 0.8, 1.0, 2.0 > 1/4/2.

The existence and uniqueness of a solution to this problem is guaranteed by (4.27).
In this case a closed form solution can be constructed. Putting p = u,, then (4.32),
(4.33) becomes

upp, + P +viptu(l—u) =0, 0<u<l, (4.34)

p(1) =0, p(0)=—v* (4.35a, b)

which is a Riccati equation. We try a solution of the form p(u) = au+ g, with «,
constant. On substitution into (4.34) we find that «, f and »* must be chosen as

oa = ﬁ, ﬂ = —ﬁ’ ’U* = ——1—2-, (4.36)
after which the solution of (4.34), (4.35) is
pu) = Jgu—1), v*= s (4.37)

Finally we have, from (4.37),

uz=71—2(u—1), —qp<z<0, } (4.38)

#(0)=0, wu(z)>1 as z——o0.

The solution to (4.38) may be obtained directly, which leads to the solution of the
original eigenvalue problem (4.32), (4.33) as u(z) = 1—e*V? (—o0 <2 < 0) with
v* = J5. The minimum speed travelling wave for the modified Fisher equation
therefore has

v¥ =y, (4.39a)

with u(z) =

1—e?vV? —o0 <2<,
(4.390)

0, 2=0.

The faster travelling waves, with v > J; are classical (via theorem (4.27)) and we
have been unable to construct analytical forms for these. However, they are readily
computed via numerical integration (with an iterative shooting method) of a two
point boundary value problem, and examples are given in figure 4 with v = 0.8, 1.0,
2.0.

We now return to discussion of the full initial boundary value problem 1BVP.
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5. Qualitative behaviour of the solution to IBVP

We consider first the minimum speed travelling wave solution of the integral
conservation law (2.1) discussed in §4. We denote this by

—7 _[H(z), =<0, 5.1

v=TE=1 s, 6.1)

where z = x —v*t, H(0) = 0, H'(0) = —v*, H(z) is monotonically decreasing in z < 0
and

H(z)~1—H__ e as z—->—o0 (5.2)

for some fixed constant H__ > 0. To obtain some insight into the qualitative
behaviour of the solution to 1BVP, we consider a closely related initial value problem,
which we shall denote by 1ve. The problem 1ve is obtained from 1BvP by extending
the domain to —oo < & < s(f), £ > 0 and replacing boundary condition (2.18) with

u(x,t)>1 as ax—>—o00, t>0, (5.3)

which allows the reaction to have reached completion as x ——0o0. A modification is
also required to the initial condition (2.17a). We extend g(x) continuously into x < 0,
so that

Tx) <ugglx) <1, x<0, (5.4a)

Ugg(x) ~1—g_, e"* as x—>—o00, (5.4b)

with g_, < H__. We can now apply the comparison theorem of Oleinik et al. (1958)
(which extends the usual comparison theorem for regular parabolic operators to
weak solutions of singular parabolic operators of the type discussed here) to rve. We
readily observe that

w(x, t) = T(x—v*t) (5.5)

provides a lower solution to 1ve, whereas
a(x,t) = T(x—v¥t—2x,) (5.6)

provides an upper solution to 1vP, with x, chosen sufficiently large so that
ugg(x) < T(x—z,) for all —oo <x<o. (Note that this certainly requires that
x, >max {o, A\ log (H_/9_.)}.) We thus have

Theorem 5.7. Let u(x,t), s(t) be a solution of 1vP then

T(x—v*t) <u(x,t) < T(x—v¥t—x,) for —oo<x<oo, t=0.
Moreover,
0 for finite t, c¢>v*,
u(§+ct,t)—>{1 4s 1o, ¢ < v (5.8)
for any —o0 < § < oo fixed, and
max {0, v¥t} < s(t) < v¥t+x,, (5.9)

forallt = 0.
Proof. Follows from Oleinik et al. (1958) with (5.5, 6). (5.8) and (5.9) follow from
properties of 7'(z) given in §4. O
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From theorem (5.7) we observe that
s(t) =v*t+0(1) as t— o0, (5.10)

with the minimum speed travelling wave structure developing in 1ve as ¢t — co.

We can now relate theorem (5.7) to 1BvP. We note that 7,,(—v*t—x,) < 0 for all
t >0, and so T(x—v*t—x,) also provides an upper solution to 1BVP in z,t = 0. In
addition, T'(—v*t) —u(0,t) < 0int > 0, provided u, is sufficiently close to unity. This
ensures that 7T(x—wv*t) provides a lower solution to VP in x, ¢t = 0. Therefore
theorem (5.7) continues to hold for 1BvP, provided that w, is taken sufficiently close
to unity.

We next consider the details of the solution to 1BvP as t—0.

6. Asymptotic solution to 1BVP as ¢t -0

In this section we consider a formal asymptotic solution to (2.16)—(2.19) as t - 0.
The behaviour depends critically on the nature of g(x) as x— o7, (2.7), and we find
there are three distinct cases to consider.

We begin by considering the case when m =1 in (2.7), so that

g(x) ~ ugg,(x—0) as xz—>o0, (6.1)

for some ¢, < 0. (2.16) then suggests looking for an expansion in the form

u(z,t) ~ g U, () t", 0<ax<o—o(l) (6.2)
n=0
as t—0, with
st) ~ o+ X 8, Gu(h) (6.3)
m=1

as t—0. Here ¢ ,,(t) = o(¢,(t)) as t 0. On substituting from (6.2) into (2.16) w
uy (%) = u

obtain uy(x) = uyg(x), u D(ugg(x)) 9" (@) +ug D' (ue g(x)) [g' () ] + R(u, (),
that from (6.2),

u(®, t) = o g(2) + Huy D(wy g()) 9" (@) +ug D’ (ug g(2)) [¢ () 2+ R(u, g(2))} + O()  (6.4)

ast—>0with 0 < z < o—o(1). This expansion remains uniform when 0 < < o—o(1);
however, on using (6.1), we observe a non-uniformity as x - o¢~. In particular, this
non-uniformity occurs when x = o+ O(t) and w = O(¢) as t — 0. Therefore, to complete
the asymptotic structure as ¢ -0, we must include an edge region. In the edge region
we introduce the scaled variables @ and Z, where

x=o0+tx, u=1tux,t), (6.5)
with Z, @ = O(1) as t > 0. In the edge region, we look for an expansion in the form

(T,1) = Ty(F)+o(l), —o0 <T<s,, (6.6)

N

as t—0, after noting from (6.5) and (6.2) that

gty =t. (6.7)
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On substituting from (6.5), (6.6), (6.7), (6.3) into (2.16), (2.18), the leading order
problem in the edge region becomes

Wy Wy, + (W, )* + T — Ty =0, —o00<T<s, (6.8a)
Wo(s1) =0, Wy (8;) = —8;, %(%T) ~g,;T as T—>—o00. (6.86—d)

Here condition (6.8d) arises from matching to expansion (6.2) as £——o0. It is
readily verified that an exact solution to the eigenvalue problem (s, is the eigenvalue)
(6.8) is given by

(7)) = 9,(T+g1), 8 =—0 (6.9)

Thus, in the edge region we have
w(Z,t) = ¢,(Z+g,)t+0(?), —o0 <Z<—yg,, (6.10a)
with s(t) = o—g, t+O(t?), (6.105)

as t—0.

To summarize, we observe that the development of u(z, {) in the support domain
0 < z < s(t) has a double structure as ¢t - 0. For 0 < x < 0 —0(¢), u(x,t) has a regular
expansion with an O(t) correction to its initial form w«,g(z), (6.4). However, in the
edge region where ¥ = o+ O(t) then (6.10a) and (6.10b) show that the boundary of
the support domain at x = s(f) initiates propagation at ¢ = 0" with an impulsive
velocity §(t) ~—g,+0(t) as t—0". In this case, the support domain initiates
expansion immediately (t = 0*) with finite speed —g,.

We next consider the case when m = 0 in (2.7) so that

g(x) ~ ugtg,+O([x—0c]), as x—o0, (6.11)

for some g, > 0. Again, away from the edge region, we look for an asymptotic
expansion for u(x, t) in the form of (6.2), with an expansion for s(¢) following (6.3). The
expansion for w(x,?) is then given by (6.4). An examination of (6.4), using (6.11),
again reveals a non-uniformity as « - o~. However, in this case the non-uniformity
occurs when @ = o+0(#) and u = O(1) as t—0. Therefore we introduce an edge
region with the scaled variable z defined by

r=0+BT, (6.12)
and z = O(1) as t -0 in this region. We expand u in the following form:
w(Z,t) = 4,(Z)+o(l), —o0 <T <5y, (6.13)
as t—0, after noting from (6.12) and (6.3) that in this case,
b, (t) = t5. (6.14)

On substitution from (6.12), (6.13), (6.14), (6.3) into (2.16), (2.19a, b), we obtain
the leading order problem in the edge region as

[D(tg) iy, 5+ 570, = 0, —00 <T < sy,
Uo(8,) =0, 7205(31) =—38, U(¥)—>yg, as T>—o00. (6.15)

We have been unable to make further direct progress with the eigenvalue problem
(6.15). However, we have investigated (6.15) in more detail for the specific case when
D(u) = u. In this case the solution to (6.15) may be written in the form

0(®) = goHge*), —o0 <T <,
1
S1 = 9% /\7
Phil. Trans. R. Soc. Lond. A (1994) 11-2
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Figure 5. A graph of H(y) against y with —o0 <7 < A = 1.2385.

where H(7) and A satisfy the eigenvalue problem
HH//+(H/)2+‘%’)7H/=O, — O <77</\, } (6 16)
HA)=0, H'\)=-%}, H@p)—>1 as 7->—oco0, '

which now has no parameters except the eigenvalue A (with prime =d/dy). A
numerical solution of (6.16) has been obtained using a shooting method and a graph
of H(n) is shown in figure 5; the eigenvalue A was determined as

A~ 1.2385. (6.17)
Hence, in this case, for general D(u), we have from (6.3) and (6.14) that
s(t) = o+s,5+0(t) as 10, (6.18)

with s, = 1.23859% when D(u) = u. Thus the boundary of the support domain, at
x = s(t), again initiates propagation at ¢t = 0", now with an unbounded velocity
§(t) ~ 3s; 2+ 0(1) as t >0". At the edge of the support domain we have,

Uy (s(t), 1) ~ —4s, 17} (6.19)
as t— 0", which for the case D(u) = u reduces to
uy(8(t),£) ~ —0.6193(g,/1)2, (6.20)

as t—0",
The next case is when m = 2 in (2.7), so that

g(@) ~ uglgy(x—0)*+O0([x—0o]?), as x>0, (6.21)

for some g, > 0. Again, away from the edge region, we look for an asymptotic
expansion for u(x, t) in the form of (6.2). After substitution from (6.2) into (2.16) we
arrive at (6.4) for u(x,t), to O(t) as t—~0. However, in this case as - o~

)

Uy(¥) ~ go(x— )%, uy(x) ~ gy(1+6g,) (x—0)?, (6.22)

with further calculations showing that
u(x) ~ O[(x—0)?] as xz—o, (6.23)
for 1 =2,3,.... Therefore, in contrast with the two previous cases, the regular

expansion for u(x,t), (6.2), remains uniform as z—o~, and an edge region as ¢t >0
is not present in this case. Moreover, from (6.22), (6.23) and (6.2) we have that the

Phil. Trans. R. Soc. Lond. A (1994)
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edge of the support domain is at x = o, and there u,(0) =0, ¢ =0,1,.... Thus, in
(6.3) ¢,,(t) =t™, m=1,2,3,... after which conditions (2.19a,b) require s, =0,
m=1,2....

To summarize, in this case s(t) = o for small ¢, and so the support domain does not
expand initially (¢ = 07). The only development in the small time in u(z, t) is confined
to the initial support domain 0 < x < o and is given through the expansion (6.4)
which remains uniform as t—0 throughout the whole support domain. We may
conclude that if the support domain is extended in this case, the initiation of this
expansion must occur at finite {(> 0). We return to this question in the next section.

Finally, we have the cases with m = 3,4, ... in (2.7), so that

g(x) ~ uglg,(x—0o)"+0([x—0o]**], as x—>o0", (6.24)

for some g, (positive for n even and negative for n odd) and n = 3,4, .... As in the
previous cases we expand u(x,t) in the form of (6.2) and arrive at the development
(6.4), up to O(t) as t—>0. As in the case with m = 2, we find that as x>0~

Uy() ~ gu(®—0)", Uy (2) ~ gu(r—0)", (6.25)

with higher order terms having the form
uy(x) ~ O([x—a]"), (6.26)
fori = 2,3,4, .... Thus in this case (as for m = 2) the expansion (6.2) remains uniform

as x> o~ and an edge region as ¢ > 0 is not present. An immediate consequence of this
is that ¢,(t) = # and s; = 0 for j = 1,2,... in (6.3). Hence s(t) = o for small { and the
support domain does not expand initially (¢ =0%), the detailed development
following that described for the previous case m = 2.

In this section we have uncovered two distinct types of behaviour in u(x,?) for
small ¢. For initial data g(x) with m = 0 or 1, then the support of u(x,t) expands
immediately, according to (6.10b) or (6.18) respectively. However, for initial data
with m > 2, the support of u(z,t) remains stationary when 0 <t < 1.

The solution thus exhibits a ‘waiting time’ for initial data with m > 2. This
phenomenon has been studied extensively in the case of nonlinear diffusion, when
D(u) = u™, R(u) =0,n =1,2,...; in particular see Lacey et al. (1982), Lacey (1983),
Aronson et al. (1983), Kath & Cohen (1982) and Lacey & Vazquez (1992). We
examine the waiting time for the present problem in the next section.

As a final remark we observe that the expansion (6.4), valid for all cases m = 0 as
t—-0with 0 < x < 0 —o(1) has a further non-uniformity as x - 0", over which the zero
flux boundary condition (2.18) is satisfied. A further passive region can be introduced
to accommodate this non-uniformity. The details are not given here as they follow
directly those given in King & Needham (1992) for a similar problem.

7. Waiting times in the cases m > 2

In §6 we have formally established the existence of a waiting time (s(t) = o for
0 <t<t, with t,> 0) in the cases m > 2. To analyse this further, we first restrict
attention to the case D(u) = u, and limit ourselves to the modified problem 1vp,
allowing us to make use of the comparison theorem of Oleinik et al. (1958).

To begin we observe that

e[(A71+6)—6€'] Y (x—0)?, —oo <x<o,
Val, 1) = 0, >0

Phil. Trans. R. Soc. Lond. A (1994)
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248 " A.0.King and D. J. Needham
is a classical solution of
V,=V,),+V, (7.2)
on —o0 <z < o0, 0<t<t, with,
t, =log (1+3A71). (7.3)
Moreover,
AMrx—0), —ow<zx<o,
Vy(x,0) = {0’ v> 0 (7.4)

and so in the case m >2 we may choose A=A, sufficiently large so that
Uy g(®) < Ap(x—0)? on —o0 < & < ¢. In fact we choose

Ag= sup [uyg(x)(@—0)7?],
ze(—c,0)
noting that A, is bounded above for the cases m = 2, and A, = g, when m = 2. With
condition (2.3 b) on R(u) it is then readily established that V) (, {) is an upper solution
torve for0 < ¢ <1, . Also, as demonstrated in §5, 7'(x — V*{) provides a lower solution
to 1ve. Thus, with u(z,t) being a solution to 1vp in the cases m > 2, we have

Tl —V¥t) < ul,t) <V, (@,1), (7.5)

on —o0 <z <0, 0<t<{, via the comparison theorem of Oleinik et al. (1958)
(note that (7.5) implies that Ay = e/ —1)). In particular we have

Theorem 7.6. Let u(z,t) be a solution of rve (with D(u) = u) in the cases m = 2. Then
u(z,t) has a waiting time t, with
log (14+§A,") <t, < V* o (7.7)
That is s(t) = o for 0 <t < tw.
Proof. Follows directly from (7.5) and (3.6). O

As in §5 it is readily established that V) (x,?) provides an upper solution to 1BVP,
as V), (0,¢) <Oforall 0 < <t, whereas T'(x— V*t) provides a lower solution for u,
sufficiently close to unity. Thus, theorem (7.6) holds also for 1BvP, when the initial
data has u, sufficiently close to unity. In fact a lower solution can be constructed for
1BVP for any u,, in terms of one of the similarity solutions given in Lacey et al. (1982).
We observe that

A - G < M
w(x, t) = 4056t +Cy (6t+C)” T T ach 78
0, x> o (6t4C)i/205,
is a piecewise classical solution to the parabolic equation
W, = (WW,),, x,1>0, (7.9)

for any C' > 0. Now for C = ( sufficiently large (certainly C, = o?/4u,),
uyg(x) = (jo°—a?)/C,

on 0 < x < 0. Moreover, w,(0,¢) =0 on ¢ > 0. Hence, as w(z,t) <1 on x,t > 0, then
R(w) =2 0onxz,t >0, and w(z,t) forms a sub-solution to 1BVP on z,t = 0 (Oleinik et al.
1958). Therefore, a modified version of theorem (7.6) for 1BvP is

Phil. Trans. R. Soc. Lond. A (1994)
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Theorem 7.10. Let w(x,t) be a solution of 1BVP (with D(u) = u) in the cases m = 2.
Then u(x,t) has a waiting time t, with

log (1+3A,") < ¢

w

<10, (7.11)

We now examine the cases m = 2, m > 3 separately, for 1BvPp.
m =2

Here uyg(x) ~ gy(x—0)? as & — o~ with g, > 0, and from (7.11) ¢, > log (1+3A;Y)
with Ay = sup, ¢ , < , 1% 9(x) (x—0)72}. In this case A, > g¢,, and for data with A, = g,
we obtain the optimum lower bound on ¢, as

t, > log[1+39;"]. (7.12)

Thus, for suitable initial data, the waiting time can be made arbitrarily large (but
finite via (7.11)). However, it should be noted that in this case, initial data may also
be chosen so that {, is arbitrarily small (but non-zero).

m =3

Here wu,g(x) ~g(x—o)™ as x—o~ with (—1)™g,, > 0. In this case we have
t, = log[14+3A;'], and again for suitable initial data, the waiting time can be made
arbitrarily large or small (but finite and non-zero).

We next consider in detail the behaviour of the solution to rBvP at the edge of the
support domain in the cases m > 2.

8. Local solution to IBVP as x— ¢~ with 0 <{ < ¢, in the cases m > 2

We examine the development of the edge of the support domain in the cases m > 2
by attempting to construct a local solution to 1BvP as x— ¢~ with 0 < ¢ < t,. We have

sty=0, 0K, (8.1)

With the initial data analytic at x = o, we expect that u(x, t) will remain analytic
at x = o until the waiting time is reached, that is on 0 <t <, Under these
conditions, u(x,t) will have a convergent power series expansion in x about x = ¢ for
each 0 <t <t,, with radius of convergence E(t) >0 on 0 <{¢<?{, and R(t)—0 as
t—t,. Moreover, the coefficients of this power series expansion will be analytic
functions of t€[0,t,). We consider first,

(@) m =2
Following the above discussion, we look for a power series expansion of wu(x,t)

about x = ¢ in the form,

u(x,t) = X (x—0)" x,(0), (8.2)

2

e

with0<o—ax<R({),0<t<t,

We observe immediately that (8.1) and (8.2) satisfy the support edge boundary
conditions of 1BVP, (2.19a,b). We now substitute from (8.1) into equation (2.16) and
initial condition (2.17a,b) with (2.7). At leading order we obtain the initial-value
problem

Xo = 60X+ Xa Xa(0) =¢5 120 (8.3)
The solution to (8.3) is readily obtained as
Xa(t) = €'/[(g2" +6)—6e']. (8.4)

Phil. Trans. R. Soc. Lond. A (1994)
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250 A. C. King and D. J. Needham
On proceeding to higher order we find that
Xs(t) = g5€'/[9a{(g3* +6) — 6 e}, (8.5a)
= 1592 ¢’ +(g4(7/—6)5+6) e’ 5D’(0)e*  5D"(0)e"  R'(0)e
Xall) = 4g3(y—6e)7 (y—6¢")? 18(y—6¢")? 432(y—6e') 48(y—6e')’
(8.5b)
where 0 is a constant given by
5 4 3 5 ” 4 15 gg 1 p7 4 2
0= 1xD"(0) (y =6)* + 355 D"(0) (y = 6)" =~ +3H7(0) (y = 6)%,  (8.6)
g; (y—6)

and v =¢,"+6. (8.7)

It is now readily observed that all higher order coefficients y,(t), » = 5,6, ..., have
the divisor [y —6¢'], with, as ¢t —>log (y/6),

Xn(t) = O[(log (y/6) —t)~ 1D, (8.8)
On putting ¢, = log (y/6), we write
Xo(l) = [(t,—)] " DB (1), n=2,3,.., (8.9)
where a,(t) is now a bounded function on t€[0,7'] for any 7" > 0. We have
0 < R(t) < (t,—tFa(t), (8.10)
where a(t) = lir:%s;lp %‘. (8.11)

The inequality (8.10) indicates that in this case ¢, < ¢, with equality holding when
a(t) is bounded above zero for t€[0,¢,]. In particular we have from §7 that when

sup {uyg(x) (x—0)7% = g,,

0<z<o
then t,=1t,=log[1+%g5"], (8.12)

via (7.12).

It should also be noted that the development (8.2) provides a formal asymptotic
solution to equation (2.16) as x—o~ with 0 <t <, In the case when ¢, <1, we
expect that this expansion cannot be continued into u(x,t) when x = o —0(1) for
t>1, and (although it still remains as a formal asymptotic solution to equation
(2.16) asx—0~, 0 < ¢ < {,) then fails to be an asymptotic representation of u(x, ¢), the
solution of IBVP in ¢ > ¢ ; that is ast ~ ¢, —o(1), the global structure of u(x, {) from the
interior of the support domain, x = o — O(1), interacts with the local behaviour at the
edge of the support domain, x = o—o(1). An asymptotic framework for this type of
behaviour has been given by Lacey (1983) for a class of nonlinear diffusion equations
and we expect this structure to be preserved in the present reaction—diffusion
context. In particular, this analysis shows that as ¢ ¢},

$(t)~C,,

for some C, > 0, which depends upon g(x), and the edge of the support domain
initiates its motion at ¢ = ¢, with a finite speed.

Phil. Trans. R. Soc. Lond. A (1994)
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In the case when (8.12) holds, then (8.2) can be regarded as an asymptotic
expansion of u(x,t) as x— o~ that remains valid until ¢ ~ ¢,—o(1), when a non-
uniformity develops due to the singularities in y,,(¢) as t ¢, (8.8). We can continue
the development of w(x,f) as x—o~ with ¢t =¢,—0o(1) by introducing a further
asymptotic region. Expansion (8.1) has the form

(x—0)? gs(x—0)? { 15g; (9,(y —6)+9)°

6(t,—1) 693 yi(t,—t)s 245 v5 (t,—1)F 6y, —t)

_5D(0) _[5D”(0)+R”(0)] 1
648(1,—1)® | 2592 ' 2304 | (1, —1)

u(x, t) ~

}x (x—o)+..., (8.13)

as x— o~ with 0 < (t,—t) < 1. The form of (8.13) indicates that there are two cases
to be considered.

1) g; #0
| )V((?ith g; # 0, (8.13) indicates that expansion (8.2) becomes non-uniform when

x = o+0[(t,—1)], (8.14a)
with w = 0[(t,—1)3]. (8.14b)
(¢) g3 =0

Expansion (8.2) now becomes non-uniform when

x=o+0[(t,—1)?], (8.15)

with w=0[(t,—1)*] (8.16)

We need to introduce two asymptotic regions when x — o~ and ¢t —¢,. The first of
these we will call the following.

Edge transition region 1
In this region we have 0 < (¢r—x) <1 and 0 < t,—t < 1. In particular we put
x=o0+t,—t)y, <0, (8.17)
and expand
w(n, t) = (t,— 1> 'a(n) + ol (t,—1)* ], (8.18)
as t >t with # = O(1). The forms (8.17), (8.18) are motivated by (8.14)—(8.16) with

7z for case (i),}

2 for case (ii). (8.19)

a
a
On substituting from (8.19), (8.18) into equation (2.16) we obtain at leading order

as t—t,,
@i, + (@, —opin+(2a—1)a =0, <0. (8.20)

”
Now, (8.18) must satisfy the support edge boundary conditions of 1BvP, (2.19a, b),
together with matching to (8.13) as #— 0~ and matching to the solution in the bulk
of the support domain (¢ ~{,, * ~ o —O(1)) as y——co. The matching conditions
require that,
@) ~n*/6 as 907, (8.21)
@(n) ~ C[—9~ 2 as g—->—c0, (8.22)
Phil. Trans. R. Soc. Lond. A (1994)
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Figure 6. The numerical solution of (8.16)—(8.18) with C'=1 and a = 2.

with the latter condition giving w ~ O(1) when x ~ 0 —0(1) and ¢ ~ t,. The support
edge conditions, (2.19a, b), together with (8.21) then require that,

s=0, 0<t,—t<1. (8.23)

The constant €' is undetermined in this asymptotic expansion, and represents the
influence of the solution when & ~ c—O0(1) and ¢~ O(1) on the solution in the
support edge region. A numerical solution of (8.20)—(8.22) (using a Runge-Kutta
method starting from the boundary condition at —oo) with C = 1 and o« = 2 is shown
in figure 6.

The boundary condition (8.22) can be developed to higher order through (8.20),
which gives

a(n) ~ C(—n)> V) —C22—a™) (3—2071) (— )2 D4, (8.24)

as 7——o00. We now use (8.24) to examine the behaviour of w as ¢t—t, with
0 < (c—x) < 1. From (8.18) and (8.24) we arrive at

w(x,t) ~ C(o—x)> VD) —C*(2—a ) (3—20Y) (0 —a)> @ (8, —t) + O[ (£, —1)?]
(8.25)

ast—t, with 0 < (c—x) < 1 fixed. Note that (8.25) develops as a regular power series
in (¢,—t). To continue the solution into 0 < (t—¢,) <1 with |[x—o| < 1 we must
introduce the following region.

Edge transition region 11

The problem in this region is to continue the solution in Edge transition region I
into 0 < (t—t,) < 1 when |x—o| < 1. Thus we must solve equation (2.16) subject to
continuing with (8.25) as t—t!, which gives

) ~ Clo—a)> /9, (8.26)

as x—o . In addition the support edge boundary conditions (2.19a,b) must be

satisfied, together with matching to the solution in the bulk of the support domain

(x=0—0(1),t ~1,). Wenote that this problem is similar to the support edge region

problems for 0 < ¢ < 1 in §6 when 0 < m < 2, with the time origin shifted to ¢t = ,.
To proceed we introduce the scaled variable 7 by,

x = o+ (t—t,)7, 8.27
Wl

u(x,

> YW

Phil. Trans. R. Soc. Lond. A (1994)
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with 7 = O(1) as t >t} and § > 0 to be determined. We expand « in the form,
u(ij,t) = (t=t,)"a(@)+ ..., ' (8.28)

ast—1}, with v > 0. To satisfy initial conditions (8.26) and balance terms in equation
(2.16) we require,
B=a, v=2a—1, (8.29)

whilst to satisfy condition (2.196) we expand s(¢) (the location of the edge of the
support domain) as,
st)=oc+(t—t,)s+..., (8.30)

with the constant s, to be determined. After substitution from (8.27), (8.28), (8.30)
into (2.16), (2.19a, b), (8.26), we arrive at the leading order problem

Wit + (W) —ofjity— (2a— 1)@ =0, —o0 <ij<s, (8.31)
u(s;) =0, wy(sy) = —asy, (8.32a, b)
a(ff) ~ C(—=)* M=, fj>—o0. (8.33)

This boundary value problem has been solved numerically by an iterative shooting
method in the cases o =%, 2, and it is found that

s, = 3.806905, 2.4303(2, (8.34)

for a =%, 2 respectively. Thus, the support domain initiates its expansion in this
region and the initial development of the support domain depends on the cases (7),
(¢7) which give, via (8.30) and (8.34)

§(t) ~ Ci=1, ), (8.35)
C2t—t,), as t—t'. '

It remains to consider the cases with m =3, 4, ... in (2.7).

(b)y m =3, 4, ...
We again look for a power series expansion of u(x,t) about x = o as
u(x,t) = X (x—0)"x,(), (8.36)
n=m

with 0 < o—x < R(t), 0 <t <, and s(t) given by (8.1). We observe immediately
that (8.1), (8.36) satisfy the support edge boundary conditions (2.19a,b), and it
remains to satisfy the initial condition (2.19a) with (2.7) (when m = 3,4, ...). After
substitution of (8.36) into equation (2.16) and applying the initial conditions we
obtain

Xm®) = gme's Xmir(t) = (@i —m2m—1) g5, 1) e,
with, in general,
Xolt) =P, (t)e!, n=m+2,...,2m—3,

2 8.37
Xal) =P,t)el+ ¥ e pn=2m—22m—1,.., (8:37)

j=2m—4

where P,(t) is a polynomial of order (n—m) and g¢; is a constant.
Via Theorem 7.10, we have established that the radius of convergence of the power
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series (8.36), R(t)—~0 as ¢t —~t,. However, when regarded as an asymptotic expansion
(8.36) continues to hold as a solution to (2.16) beyond ¢ = ¢, (as the coefficients ¥,,(¢)
remain bounded with t€[0,7] for any 7' > 0), but cannot continue to represent
u(x,t), the solution of 1BVP. It must fail to be continuable into w(z,t) when
x=0—0(1)int > 1, Asin the case m = 2 with ¢, < ¢,, the global structure of w(x,t)
(on 0 < « < 00— O0(1)) interacts with the local expansion (8.36) as ¢ - ¢, to bring about
initiation of motion at the edge of the support domain at ¢ = ¢,. Again, the structure
of this interaction will follow that given by Lacey (1983), and thus has,

§ty~C as t-t},

C > 0, depending upon g(x). All cases have now been covered, and we confirm the
asymptotic analysis by next considering a numerical solution to 1BVP.

9. Numerical methods and results

To gain some further insight into the evolution of the initial data and to confirm
some of the asymptotic results of the previous section it is necessary to use a
numerical method to solve 1Bvp. The generality of the reaction and diffusion
functions hitherto adopted serves no particularly useful purpose here and accordingly
we consider the specific forms D(u) = w and E(u) = u(l —u), with equation (2.16)
becoming

aa—?=é%(u2—z)+u(l—u). (9.1)

This form of reaction and diffusion functions is clearly seen to be within the set
described in §2 and we further take the extent of the initial data as o = 1. Equation
(9.1) is to be solved subject to the boundary conditions

ou/0x (0,8) =0, wu(st),t)=0 and Ou/0x(s(t),t) =—3s(t),

and the initial condition u(x,0) = uy(x), 0 < x < 1. It is convenient to transform to
a fixed computational domain using the transformation = x/s(t) which gives
Ju 8xdu 10 ( @u)

0z

subject to the unchanged initial condition w(z,0)= u,(Z) and the boundary
conditions u;(0,t) =0, u(1,t) =0 and wuy(1,t) = —s$. To use existing numerical
methods for classical parabolic equations the following strategy was used. The
function s(t) is regarded as constant over each time integration of (9.2). A local
asymptotic solution to (9.1) valid near z = 1 is u = s$(1 — ) + O((1 —x)?). This is used
as a boundary condition at ¥ =1—¢ (where & is much smaller than any spatial
discretization of (9.2)). The remaining boundary condition u,(1,t) = —sé is used only
to update the value of s(f) at the end of each timestep. After an integration and
discretization, by the trapezium rule (the error term of which is consistent with time
integration of (9.2)) the appropriate form of this condition is seen to be

S2(t40t) = s2(t) — 8t {uy(1, £+ 0t) +uz(1, 1)} (9.3)

The advantage of using this leap-frog procedure is that the numerical solution of
(9.2) can be obtained at each timestep using the NAG library routine DO2PAF which
is extremely efficient and is based upon the method of lines and a Gear’s procedure.
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Figure 7. A graph of s(f) against ¢ for 1BvP when o =1 and (a) u, = 0.3(1—2); (b) u, = (1 —2)%
0.8 1
u
0.4
0 T 1 1 I i T 1 T 1 1
0 5 10

x
Figure 8. A graph of u(x,t) against x at t = 2.5, 5.0, 7.5, 10.0, 12.5, when o =1
and uy(x) = 0.3 (1—x).

In all the results presented here the spatial discretization of the interval 0 <z < 1
was taken as 0.01, the timestep was 0.005 and the quantity & was chosen to be 107¢.
The choice of these particular parameters ensures that the numerical solutions are
mesh independent, at least to within graphical accuracy. There are two features of
the numerical solution which are of particular relevance: the behaviour of the
moving boundary s(t) and the long time behaviour of the solution u(x,t). Figure 7a
shows the development of s(f) when the initial data was of the form of
uy(x) = 0.31(1 —x). It is clear that the support edge of the initial data in this case
moves immediately, as is predicted by the asymptotic theory, and, in the large
time limit, approaches a constant speed. This speed is computed by the above
method as 0.70753 which is in good agreement with the predicted value of 1/4/2.
For initial data of the form wy(x) = (1—x)? figure 70 shows the waiting time
phenomenon described in the previous section. For this case u,(x) is such that
g =1 =sup, <, <1 {uy(®) (x—1)7%}. Thus (8.12) holds and the theory gives
t, =log (7/6) ~ 0.154. The computed time elapsed before s(t)—1 attains a value
greater than 107 is 0.151 and again compares well with the theoretical value. The
behaviour of u(z, t) in the former case for a sequence of equally spaced times is shown
in figure 8 and clearly demonstrates the approach to a non-classical travelling wave
with the fully reacted state far behind the wave-front.
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10. Asymptotic solution to IBVP as {— o

In this section we examine the large time asymptotic development of 1BvP when
a travelling wave structure evolves as t—~ c0. The permanent form travelling wave
which evolves from 1BVP as t— o0 must have compact support, and is therefore the
permanent form travelling wave of minimum speed v = v* (see §5). The asymptotic
structure of u(x,t) as t— oo has three regions.

Region 1

Here z = O(1) as t—+ 00, and we expect u(z,t)—~ 1 in this limit, which is the fully
reacted state at the rear of the travelling wave. We write

w(x,t) = 14+ ¢(x, 1), (10.1)

where ¢(x,t) = o(1) as t - c0. After substituting from (10.1) into equation (2.16) we
obtain at leading order in ¢,

¢y =D(1) $,, +R'(1) p, (10.2)
with x > 0 and ¢ > 1. The form of (10.2) leads us to put
Pla,t) = 17N D, (1) + py(w) £+ .} + O DY) (10.3)

as t— 00. After substitution into (10.2) and applying the boundary condition (2.18)
at x = 0, we find that

P@) =b, ¢y(x) = d—3ba®/D(1), (10.4)

where b and d are constants which cannot be determined in the asymptotic
development as ¢t — o0, and depend upon the details of g(x) with x = o —O(1). Thus,
from (10.1)—(10.4) we have

w(@,t) = 1+ bt eF O {1 4 [d—1a2/D(1)]t 1 +...}, (10.5a)
at t—oo with z = 0O(1), where d = d/b. Clearly, this expansion develops a non-
uniformity when x = O(t2), and we require a further region.

Region 11

In this region, x = O(t*) as t - 00, and from (10.5a) u = 1+ O[t e ® ], Therefore
we introduce the scaled variable Z as,
x=z, (10.5b)
with T = O(1) as t > 00. We expand u(Z, t) in the form
Wz, t) = 1+t 5eB VG (Z)+ 1710 (T) + ...}, (10.6)

as t— oo with & = O(1). After substitution from (10.6) into equation (2.16) we obtain

at leading order the following problem for G :
D) Gy +3xty+0, =0, 0<7Z< o0, } o
(,(0) =b, Gy(x) bounded as x> 0. (10.7)

The boundary conditions arise from matching with region I as z— 0, and to enable
matching with region I1I as - co. The solution to (10.7) is readily obtained as

Go(T) = be i7/PW),

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

/\
A

' \

e ol

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
i\

y 9

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Variable diffusivity in reaction—diffusion 257
and the expansion for «(Z,¢) in this region is therefore,
W, ) = 1 +177eF W1 {pemi7/DW L O(1)}, (10.8)

as t— o0 with = 0(1). The calculation of higher order terms in (10.8) reveals a
further non-uniformity when z = O(#), that is = O(t). This puts us into the wave-
front region.

Region 111
In this region x ~ O(t) and the minimum speed permanent form wave-front
appears at leading order. With the leading edge of the wave-front at x = s(t), we
introduce the coordinate y so that
x=s(t)+y, (10.9)
with ¥ = O(1) and negative in this region. We expand u(y,t) and s(t) in the form

u(y,t) = u*(y)+X(t)u1(y)+---,}
$(t) = v*+yY(t) v +...,

as t—>o0 with y = O(1). Here x(t), ¥(t) = o(1) are (as yet) undetermined gauge

functions, whilst u*(y) represents the minimum speed (v = v*) permanent form

travelling wave solution (see §4). After substituting from (10.9), equation (2.16)
becomes

(10.10)

w,—8(t) uy, = D' (u) uy +D(u) uy, +R(u), —oo <y<0, (10.11)
which is to be solved subject to conditions (2.19a, b), which become
w(0,t) =0, u,(0,t) = —5(¢), (10.12)

together with matching to region II as y - — co. On substituting from (10.10) into the
edge conditions (8.12) we find that i (¢) = O(x(t)). Therefore, without loss of

generality, we put
Y(t) = x(t). (10.13)

Furthermore, the matching of expansion (10.8) to expansion (10.10) in region III

requires L rprery L2
() = (el RO DO, (10.14)

With y(t) and x(¢) given by (10.13), (10.14), we substitute from (10.10) into (10.11)

and (10.12). At leading order we obtain the following linear boundary value problem
for u,(y),

D(w*)uf + 2D (w*) w* +o*}pul +{R (w*) + D' (w*) u*”

+D"(u*) (u*)2—R' (1) +3*2/D(1) u; = —v,u¥, —oo <y<0, (10.15)

u,(0) =0, uj(0) =—w,, (10.16)

uy(y) ~ be @WPM a5y — o0, (10.17)

Here prime = d/dy and condition (10.17) is determined by matching to region I1. The

problem (10.15)—(10.17) is an eigenvalue problem for »;. For a given b > 0, it can be

shown that (10.15)—(10.17) has a unique solution. However, our primary interest is

in determining »,, and this can be achieved without a detailed solution of

(10.15)-(10.17). Let y(y) be the solution of equation (10.15) and conditions (10.16)

with »; = 1, and condition (10.17) replaced by u,(y) ~ O(e #*¥/PM) a5 iy > — c0. Then,

')/(y) ~ Yo e_%v*y/ZD(l) as y-—>— o0, (1018)
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for some fixed constant v,. The solution to (10.15)—(10.17) is then readily obtained
as

uy(y) = v, 7(y)- (10.19)

Moreover, from (10.18) we have
Uy () ~ Yov, e VPD ag s o0, (10.20)
which, on comparing with condition (10.17) leads to
v, = vy 'h. (10.21)

Note that the constant b arose in region I, and is not determined in this long time
asymptotic development, with it being a remnant of the earlier time evolution in the
main support domain.

Finally, from (10.2), (10.14), (10.13) and (10.10) we find that the long time
asymptotic wave-front propagation speed is given by

$(t) ~ v +ygt bt exp{[R'(1)— Qi /D()) ]t + ...,

and the minimum speed, permanent form, travelling wave is approached through
exponentially small terms as ¢+ co. This rapid contraction onto the permanent form
wave is evident in the numerical solutions of §9 (see figures 7-8).

11. Conclusions

We have considered piecewise classical solutions to the integral conservation law
(2.1) subject to conditions (2.4)—(2.6). The problem has been reformulated into
examining the initial boundary-value problem 1Bve. The initial data w,g(x) has
compact support with the support being I =[0,0], and g(x) analytic and
monotonically decreasing in /. In particular g(x) = O([x— o |™) as x—+ o~ for some
m=0,1,2,....

The existence of a family of permanent form travelling wave solutions (Tw) to the
integral conservation law (2.1) has been established, parametrized by their
propagation speed v > v*. For v = v* the Tw has semi-infinite support, whereas for
v > v* each TW has infinite support. For all initial data, we have shown that u(x, )
(the solution to 1BVP) develops into the T™w with minimum speed v =v* In
particular, as t— oo, the edge of the support domain (0 < z < s(¢)) has

$(t) ~ v¥ 4+ O[fre,
where ¢ = *2D(1)"'—R’(1), and the contraction onto the minimum speed TwW is
rapid, through terms exponentially small in ¢ as ¢+ 0.

For initial data with m = 0,1 the edge of the support domain initiates motion
immediately, at t = 0, with

+o(1), m=1,
§(t) ~ |91|_l (1)
O(t™), m =0,
as t—>0". The cases m = 1,0 give rise to impulsive and singular initial motion
respectively. However, for initial data with m > 2, a waiting time ¢, > 0 appears, and
the edge of the support domain remains stationary until ¢ t;. Specific initial data

in this class can always be chosen to set the waiting time to be as large or small as
desired. In particular we have

t, = log (1+5A,7).
Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

/,//’ \\
'
{ A

J (

Py

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

a\\

A

a

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Variable diffusivity in reaction—diffusion 259
where A, = sup, ., <, {%,9(x) (x—0)72}. For m = 2 we have
t, <log(1+3ig;Y),
and so for initial data with A, = ¢,, then
t, =log (1+3g5").
When waiting times are present (m > 2) the initiation of motion of the edge of the
support domain has been discussed. For m = 2 we find that as { > ¢},
8(t) ~c, when ¢, <log(1+1ig;Y),

for some constant ¢, > 0 (depending upon g(x)), whilst

. {oqt—twﬁ), gy # 0
W01, g=0

when ¢, = log (1+4g;"). For m > 3, the initiation of motion of the edge of the support
domain always has the form $(t) ~ ¢, as t—>t}, with ¢, > 0 depending upon g(x).
For cases m > 3 and m = 2 with ¢, < log (1+1g;'), the initiation of motion of the
edge of the support domain is caused by global effects throughout the support
domain on 0 <t <1, whereas for m =2 with ¢, = log (1+12¢;"), the initiation of
motion is controlled purely by local conditions at the edge of the support domain.

Appendix

Here we demonstrate that the solution wu(x,t) = 0 to the initial boundary value
problem (2.20)—(2.23) is unique. Let u = 4i(x, 1), s(t) < x < 00, t = 0 be a solution of
(2.20)—(2.23). Then, following the approach adopted in the proof of proposition (3.1),
we can readily establish that

0<dfxt) <1, (A1)
on x = s(t), t = 0. We next integrate both sides of equation (2.20) with respect to =,
over the interval s(t) < x < co. Since 4(x,t) is classical in x > s(f), we arrive at

0

%Uw zz(x,t)dx}—i-?i(s(t),t)s = [1)(a)zzz]g<;t)+f R(@) de. (A 2)

s(t) s(t)

On using boundary conditions (2.22) and (2.23a, b), (A 2) reduces to

%{Jw ?Z(x,t)dx} = fo R(4)dx. (A 3)

s(t) s(t)
On using (2.36) and (A 1) in (A 3) we obtain

%’if—g./}so, t>0. (A 4)

where Y(t) = f iz, t)de, ¢=0. (A 5)
s(t)

In addition the initial condition (2.21) requires that

A

Ji(0) = 0. (A6)
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The differential inequality (A 4) may be re-written as, (1} e™"), < 0,t> 0, which (after
applying [5... dt to both sides and using condition (A 6) leads to ¥ () < 0. However,
(A 1) and (A 5) imply ¥r(t) = 0. Hence y(t) = 0, t > 0. Inequality (A 1) and (A 5) then
lead to,

Az, t) =0, x=s(), t=0,
as required.
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